Four Step Synthesis of the Antimalarial Cardamom Peroxide via an Oxygen Stitching Strategy

Xirui Hu and Thomas J. Maimone J. Am. Chem. Soc., Article ASAP DOI: 10.1021/ja502208z

Nicholas Reed Wipf Group Current Literature April 12, 2014

Malaria and Endoperoxides

- By the 1960s, Malaria had a resurgence
 - Mesquitos developed resistance to the insecticide DDT
 - Resistance to synthetic analogues of quinine
- Chinese government discovered that Artemisis annua had promising antimalarial properties
 - Led to isolation of artemisinin and development of better analogues via synthetic means
 - Has been the "front-line" treatment for malaria since
 - Artemisinin resistant malaria has begun to develop*
- Endoperoxide bridge is essential for activity
 - Build-up of free heme groups leads to breakdown of peroxide bridge
 - Resulting peroxy radical rearranges to carbon-centered radical (reductive scission vs. open peroxide models)

Artemisia annua gobotany.newenglandwild.org

Molecules **2010**, 15, 7603 *Nat. Prod. Res. **2004**, 18, 503 *Drugs Future **2005**, 30, 509

Presumed Mechanism of Action

Analogous to mechanisms proposed for atemisinin

Open Peroxide Model

Reductive Scission Model

ChemMedChem 2007, 2, 1480

Reductive Scission Model:

J. Med. Chem. 1995, 38, 2273 J. Am. Chem. Soc. 1992, 114, 8328

Helv. Chim. Acta 1996, 79, 1475

Cardamom Peroxide

- Isolated from Amomum krervanh Pierre ("Round Siam Cardamom")
- Structure and relative stereochemistry determined primarily by NMR, IR, and X-ray diffraction experiments
 - Absolute stereochemistry unassigned but initially assumed to be derived from the same myrtenals that were also isolated

Cardamom Peroxide

- $EC_{50} = 170 \text{ nm against } P. \text{ falciparum}$
- Presumed mechanism of action involves activation by Fe(II) to cleave peroxide bridge and subsequent alkylation of malarial proteins

www.tcmfe.com

Key Structural Features

1,2-dioxepane motif
Semi-symmetric bipinane structure

Tetrahedron Lett. **1995**, *36*, 1821 *Molecules* **2010**, *15*, 1705

Previous Synthetic Work

Unsuccessful radical cyclization to 7-membered endoperoxide

Me Me
$$i. O_2, DBPO$$
 $n = 1 (36\%)$ $n = 2 (14\%)$ $n = 3 (0\%)$

Tetrahedron Lett. 2002, 43, 6275

Successful analog synthesis via silylperoxide cyclization onto a dioxolane

Analogs show roughly 10-fold decrease in potency **No synthesis of natural product to date!**

Bioorg. Med. Chem. 2003, 11, 3791

Restrosynthesis

- •Utilizes readily available pinene building blocks and molecular oxygen
- •All stereochemical information comes from chiral pool (pinene skeleton)
- •Challenges to overcome: 6-exo closure preference of peroxy radical, literature precedence, and chemo-, regio-, and stereochemical questions in cyclization

J. Am. Chem. Soc., Article ASAP, **DOI**: 10.1021/ja502208z *Tetrahedron Lett.* **2002**, *43*, 6275

- McMurry Coupling
- •[4+2] cycloaddition using singlet oxygen and Kornblum-DeLaMare Rearragement
- Dess-Martin Oxidation

3 Steps
28% yield overal to penultimate compound

J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z

Entry	Conditions	Isolated Yield (%) ^a
1	$Fe_2(ox)_3 \cdot 6H_2O$ (5 equiv), NaBH ₄ (6.4 eq), EtOH/H2O, 0 °C	0
2	Fe ^{II} (Pc), NaBH ₄ (3 eq), EtOH, 0 °C	0
3	Fe(acac) ₃ , PhSiH ₃ (2.5 eq), EtOH, 0 °C \rightarrow rt	0
4	$Co(acac)_2$, PhSiH ₃ (2.5 eq), DCM/ <i>i</i> -PrOH, -10 °C \rightarrow rt	6
5	Mn(dpm) ₃ , PhSiH ₃ (2.5 eq), DCM/ <i>i</i> -PrOH, -10 °C	34
6	Mn(dpm) ₃ , PhSiH ₃ (2.5 eq), DCM/ <i>i</i> -PrOH, -10 °C	41 ^b
7	$Mn(dpm)_3$, $PhSiH_3$ (2.5 eq), $t\text{-BuOOH}$ (1.5 eq), $DCM/i\text{-PrOH}$, -10 °C	52 ^b

^aReaction performed on 0.1 mmol scale using 10 mol% of catalyst unless otherwise stated ^bPhenylsilane added slowly over 12 h as a solution in DCM

J. Am. Chem. Soc., Article ASAP, **DOI:** 10.1021/ja502208z

- 1. Formation of manganese hydride and subsequent complexation of triplet oxygen
- 2. Conjugate addition to form manganese peroxyenolate
- 3. Subsequent rearrangement to form peroxy ketone
- •Deuterium labeling experiments confirm irreversible addition of hydride by manganese
- •Radical mechanism is also possible*

Tetrahedron Lett **2000**, 41, 9725 Tetrahedron Lett **2000**, 41, 9731

18% overall yield 4 steps from (-)-myrtenal

J. Am. Chem. Soc., Article ASAP, DOI: 10.1021/ja502208z

Reductive Cleavage with Fe(II)

•X-Ray confirmation of structures 12 and 14

Conclusions

•4 Step enantiospecific total synthesis of Cardamom Peroxide (15% overall yield)

-Utilizes a Mn-catalyzed olefin hydroperoxidation

•Determined mode of reductive cleavage upon reaction with Fe(II)